

Biomass Gasification with Circle Draft ® Process Gian Claudio Faussone Abu Dhabi January 17th 2011

Presentation outline

§ A Glance at INSER SpA
§ Why Gasification?
§ Circle Draft ® Process
§ Pilot Plant of Cherasco, Italy
§ Conclusions

A Glance at INSER Sp.

- Power Generation
 - Small Hydro
 - Biogas (manure)
 - Landfill Biogas
 - Solar PV
 - Biomass with gasification
- R&D
 - Gasification
 - Second Generation Biofuels

Why Gasification?

GASIFICATION FOR PRODUCTS

Problems Usually Associated with Biomass Gasification

- Great Experience on Coal Side Products Gasification Worldwide, But Not on Biomass
- Lack of support for Development
- Biomass is very Heterogeneous Feedstock
 - Biomass Quality, Type, Size
 - Moisture
- Quality Syngas
 - Low Heating Value
 - Tar Removal (Wash, Filter)

- management
 - Brown Water (Process)
 - Ash, Slag (Process)
 - **Contaminated Water** (Gas Cleaning)
- Biomass Strict Selection
- Strict Moisture Control (usually < 10%)
- Non Standard **Equipments** Needed
- Overall Complexity
- Unreliability

Problems Solved with Circle Draft ® Proce

- No Selection Required
- 20% or more Moisture Allowed
 - Moisture is Useful for the Syngas' Self Cleaning
- No Strict Gas Cleaning Required
 - No washing
- Good Quality Syngas
 - Higher LHV compared with Standard

Circle Draft ® OFF Circle Draft ® ON

Circle Draft ®

Comparison table					
Process			Circle Draft		
type		Down Draft	R	Prenflo ™	
				Uhde	
Company			INSER	TyssenKrupp	
Feedstock		wood	wood	Coal/Petcoke	
Oxidant		air	air	O ₂ 85% purity	
Pressure		atmosferic	atmosferic	≥40 bar	
Gas' composition % v/v					
H ₂		12,0	33,4	21,7	
СО		12,6	47,2	59,9	
CH₄		3,9	3,6	< 0,1	
CO ₂		15,3	< 0,1	2,9	
N ₂		51,0	15,7	14,4	
others		5,2	0,0	1,1	
Fuel gas %		28,5	84,2	81,6	
LHV (MJ/nm³)		4,3	11,5	10,16	

9

Circle Draft ® **Pilot Plant Cherasco**

Flar e

Biomass Preparation

Gasification and Gas Cooling

r

Powe 10

Circle Draft ® Pilot Plant Cherasco

Description	
Fuel type	Wood Chips
Oxidant	air
Gas rate	0,9 nm ³ /Ka
Gas' Heating Value	2750 Kcal/nm ³
Self consumption	20%
Efficiency	75%
	max 50 cm
Pressure (relative)	H_2O
Production	nm ³ /h
Steam	app. 9 Kg/h
Gas Cooling	Water

Conclusions

- Main Issues connected to Biomass Gasification Solved
- Further Improvements in Mechanics Foreseen
- Switch to Air Cooling from Water Cooling
- Further Improvements for Syngas' Quality Using 85% Oxigen under Evaluation
- Improved Design for > 500 nm³/h Syngas Production underway
- Engines and/or Gas Turbines under Evaluation
- Liquid Fuels Synthesis

Thank you

Contacts INSER SpA Eng. Gian Claudio Faussone C.so Appio Claudio 229/5, Turin, Italy gcfaussone@lazabila.it inser@lazabila.it www.inser.it